Multi-Dimensional, MultiStep Negotiation for Task Allocation in a Cooperative System

نویسندگان

  • Xiaoqin Zhang
  • Victor Lesser
  • Rodion Podorozhny
چکیده

We present a multi-dimensional, multi-step negotiation mechanism for task allocation among cooperative agents based on distributed search. This mechanism uses marginal utility gain and marginal utility cost to structure this search process, so as to find a solution that maximizes the agents’ combined utility. These two utility values together with temporal constraints summarize the agents’ local information and reduce the communication load. This mechanism is anytime in character: by investing more time, the agents increase the likelihood of getting a better solution. We also introduce a multiple attribute utility function into negotiations. This allows agents to negotiate over the multiple attributes of the commitment, which produces more options, making it more likely for agents to find a solution that increases the global utility. A set of protocols are constructed and the experimental result shows a phase transition phenomenon as the complexity of negotiation situation changes. A measure of negotiation complexity is developed that can be used by an agent to choose an appropriate protocol, allowing the agents to explicitly balance the gain from the negotiation and the resource usage of the negotiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Results On Cooperative, MultiStep Negotiation Over a Multi-Dimensional Utility Function

We present a multi-dimensional, multistep negotiation mechanism for task allocation among cooperative agents based on distributed search. This mechanism uses marginal utility gain and marginal utility cost to structure this search process, so as to find a solution that maximizes their combined utility. These two utility values together with temporal constraints summarize the agents’ local infor...

متن کامل

Improving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning

In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...

متن کامل

Cooperative, Multistep Negotiation over a Multi-dimensional Utility Function

We present a cooperative, multistep negotiation mechanism for multiagent systems. This mechanism uses marginal utility gain and marginal utility cost to structure the negotiation process. This enables an agent to understand another agent’s situation in order to find a solution that increases their combined utility. These two values summarize the agent’s local information and reduce the communic...

متن کامل

Optimal Power Management to Minimize SER in Amplify and-Forward Relay Networks

This paper studies optimal power allocation to minimize symbol error rate (SER) of amplify-and-forward cooperative diversity networks. First, we analytically solve optimal power allocation problem to minimize SER for three different scenarios, namely, multi-branch single-relay, single-branch multi-relay and multi-branch multi-relay cooperative diversity networks, all subject to a given total re...

متن کامل

Multilevel Approach to Agent-Based Task Allocation in Transportation

We present a hybrid algorithm for distributed task allocation problem in a cooperative logistics domain. Our approach aims to achieve superior computational performance by combining the classic negotiation techniques and acquaintance models from agent technology field with methods from the operation research and AI planning. The algorithm is multi-stage and makes a clear separation between disc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004